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Abstract 

An automated technxque to segment solar coronal loops 
from intensity images of the Sun’s corona is introduced It 
exploits physical characteristics of the solar magnetic field 
to enable robust exlraction porn noisy images. The tech- 
nique is a CollStnrCtiYe curve defection approach, con- 
strained by couectiOnr of estimates of the mag&fields 
orienmion. Its eflectiveness is evaluated through experi- 
ments on synthetic and real coronal images. 

1. Introduction 

The Sun is adynamic force that greatly impacts the so- 

communication and weather. Solar physicists ~IE currently 
attempting to gain a stronger understanding of solar dyna- 
mism, partially via study of solar magnettsm. 

Observing and analyzing the solar magnetic field from 
solar satellite images is one key means to study solar dy- 
namism. In particular, solar physicists are in- in 
examining solar cor~na images. NASA’s ongoing TRACE 
satellite mission, which collects high-resolution ( 5 1 2 ~  
512) intensity images of the Sun’s COIOM several times per 
hour, is a preferred source of such images. (A sample 
TRACE image is shown in Fig. l(a).) The primary exami- 
nation task is to detect and identlfy the solar COTonal loop 
structlrres in these mages. Previously, automatic means to 
detect and identlfy such structures haven’t been successful, 
current scientific study of solar coronal loops requires 

tection of coronal loops is chall-g, even using TRACE 
images, because the loop structures tend to have blurry 
boundaries and overlap in the imagery. Many loops also 
have low contrast subsegments. (The intensity of such 
sub-segments is relatively lower than that of others.) In 
addition, there is impulse noise in the images. 

In this paper, a new technique, the Oriented Connec- 
tivity Method, for automated segmentation of coronal 
loops ffom images of the Sun’s cor~na is introduced. The 

lar system. h pamcular, solar activity can impact tenemid 

m m d  exeactian of the 1qY strii-tures from images. De- 
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technique exploits constraints based on physical properties 
to guide the curve detection process. 

2. Related Work 

A number of methcds for representing, following, and 
lmking edge structures in intensity images have been p- 
sented. For example, since the early 60’s starting with 
Freeman’s [2] well-known chain coding. structlrre bound- 
ary representation mechanisms have been presented. Edge 
linkage approaches have also been described. For example, 
Makhervaks et al. [7] have recently presented an edge 
linkage process that joins edge structures using an edge- 
explorer operator that acts on a @em vector field. 

Curve feature detection methods have also been de- 
scribed. For instance, Canning et al. [l] have detected thin 
curve features by examining pixel neighborhoods to iden- 
tify local gray level patterns that are consistent with the 
presence of an edge. Adjacent, compatible edge pixels are 
then linked. Jang and Hong [4] have detected ClIIVilinear 
structures using skeleton extraciion. They use Carmy edge 
detection to define the boundary points of the regions in 
which the skeleton extraction will be performed. 

Hough-based techniques [3] have also been used in 
curve detection. Their large parameter space for large im- 
ages and for complex shapes, such as in our problem do- 
main, is a difficulty, however. Active contour models (i.e., 
snakes [5]), which are typically defined as energy- 
minimizing splines, have also been widely used. A di€€i- 
culty with using snakes for coronal loop detection is that 
there are many nearby loops and the loops cross each other, 
so it is easy for a single snake to lock onto components of 
mdtip!e !caps. C ~ m d  lcm~ crossii~gs also compbczte use 
of many other curve detection schemes. 

Strous [ 101 has described a pixel labeling algorithm for 
coronal images. The algorithm labels a pixel as a member 
of a loop structure if the pixel’s intensity is higher than 
those of more than two of the four cross-pairs in its 3 x 3 
neighborhood (and as a non-mmber otherwise). Since the 
pixels on the central axis of the coronal loop structures are 
usually brighter than the neighboring pixels, Strous’s algo- 
rithm detects most of the coronal loop pixek. It does not 
detect loops per se, however, as it has no process to link 
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pixels into loop sbuctures. In addition, the algorithm 
falsely labels as loop pixels many noisy background pixels 
and many bright pixels not actually on coronal loops. 

3. Coronal Loop Detection Methodohgy 

Next, we describe our new Oriented Connectivity 
Method (OCM), which is based partly on Strous’s loop 
pixel labeling [lo]. The OCM constmctively segments the 
coronal loops while simult;meousl y eliminating false loop 
pixels. The appma&’s processing includes steps that 
achieve joining of disconnected loop sub-segments, thus 
forming descriptions of complete loops. The Oriented 
Connectivity performs its loop segmentation by exploiting 
a physical constraint, namely the local orientation of the 
solar magnetic field. Since coronal loops align with the 
solar magnetic field, we exploit knowledge of the field to 
aid the Idcage process. 

uagnetic fields, including local fields in regions about 
the Sun, can be reasonably approximated in 3D space by a 
dipole field model [6]. One complexity in using a 3D spa- 
tial model to guide loop detection in the coronal intensity 
images is that such images record the projection of 3D 
structures onto 2D image space. The Sun’s field is also a 
collection of many dipoles, and each one’s position needs 
to be estimated. Thus, many points in 3D space, each with 
a different local magnetic fi& orientation, coukl project to 
each pixel. Some 3D-b2D-pjected loops could also 

Our approach exploits the @le field model by, at 
each pixel labeled as a loop pixel after application of 
Strous’s algorithm, considering a set of estimates of the 
3D-to-2D-projected magnetic fields’ orientafions. We use 
these estimates to progressively link pixels with consistent 
magnetic field orientation. The set of estimates are taken 
from a set of azimuth maps (of the magnetic field) h m  a 
solar magnetogram. The positions of dipoles for the d i p  
lar magnetic field model can be detemmd . using the local 
minima and maxima ofthe magnetogram and a numerical 
method (e.g., Powell’s minimktion [9]). Each azimuth 
map records an estimate of the angular direction of the 
magnetic field and is defined for one height above the solar 

muth map is a map of the magnetic field’s orientations at a 
given height (i.e., in z). The azimuth can be derived tiom 
the vector sum of the n and y components (i.e., B, and 
By ) of the m a p t i c  dipole flux density equation [ 81: 

B, =3Boxz lr ’ ,  B, =3Boyz l rS ,  (1) 
where x, y, and z are the Cartesian components of the mag- 
netic field position vector, r is the magnitude of the posi- 
tion vector, and Bo is the magnetic force constant. 

CTOSS. 

surface, SO for small regions Of the solar SU&X each azi- 

3.1. Preprocessing 

The Strous’s algorithm [ 101 (that our approach is based 
upon) produces a poor labeling when applied to a raw 
TRACE image, partially due to the known imaging effects 
described earlier. Thus, to remove impulse noise and to 
improve the contrast between the loops and the back- 
ground, prior to applying the Strous algorithm, we have 
applied median filtering followed by unsharp masking as 

that7x7 
median filtering could eliminate much of the impulse 
noise. The unsharp masking used a blurred image obtained 
&om I l x  11 linearsmoothmg. 

Fig. l(a) shows a sample coronal image. The result 
h m  median filtering that image is shown in fig. l@). The 
contrast-enhanced result of the unsharp masking on the 
same underlying image is shown in Fig. l(c). As shown in 
these figures, the impulse noises are removed and the loop 
structures are sharpened by the preprocessing. 

The Strous’s loop pixel labeling [IO], even when ap- 
plied to an image “cleaned” by median filtering and un- 
sharp masking, still misclassifies many noise pixels and 
bright pixels that aren’t on the coronal loop structures. 
coronal loop structures’ low contrast and blurriness are 
largely responsible for these falsely-labeled pixels. How- 
ever, these falsely-labeled pixels can be largely removed 
by a combination of global and adaptive thresholdings 
applied to the “cleaned” image. 

We first apply a global thresholding. Its threshold is the 
median intensity T of the filtered images; all pixels whose 
intensity is less than Tare considered to be non-loop pixels. 
Next, additional falsely-labeled pixels are removed by an 
adaptive thresholding step. The adaptive thresholdings is 
performed in each sub-region of the image. We have found 
empirically that dividing the image into 3 1 x 3 1 pixel tiles 
with 50% overlap (e.g., the tophalf of a sub-region R, 
overlaps the bottom-half of a region R, that is above sub- 
region R,) produces reasonable results. The threshold 
used in the i“ subregion is the sub-region’s median inten- 
sity . In fact, wherever subregions overlap, the thresh- 
old for the overlapped area is the mean of the thresholds of 
the overlapping sub-regions. Fig. l(d) shows the result 
after applying the two thresholdings to a “cleaned” image 
(i.e., of Fig. l(c)). Many, but not all, falsely-labeled pixels 
in this figure have been removed by the thresholdings. 

preprocessing steps. We empirically deterrmned . 

3.2. Oriented Connectivity Method (OCM) 

Our Oriented Connectivity Method’s constructive curve 
detection starts from any pixel labeled as a coronal loop 
pixel and then forms a clustering of all the other pixels that 
define the same loop structure. This process is applied 
repeatedly until all pixels labeled as loop pixels have been 



processed. Although any scanning process can be used to 
find the starting points on each loop, we have found that 
searching for a starting point in a column-wise process 
followed by a row-wise process is typically sufficient to 
find the major loop structures. (We’ve also found it’s suffi- 
cient to perform the column- (row-) wise search only every 
twentieth column (row).) 

The forming of a clustering of pixels into a loop is a 
stepwise process which at each step adds one pixel to the 
current loop. The ‘best” pixel to be added is found by a 
search from the crrrrent loop‘s end pixel. A small fan- 
shaped region (the “searching region”) about that pixel is 
where the search occu~s. The searchrng region’s fan shape 
is bounded by the magnetic field minimum and maximum 
angular directions (azimuths) for that pixel. The region’s 
extent d was empirically deteamid to be 5 pixels. An 
example of the searching region for a pixel S is shown in 
Fig. 3. In the figure, the arrows represent the azimuths at 
different heights. The thick arrows represent the extremal 
azimuths. The ‘W’ pixel in the region is the one that 
best-preserves loop continuity in position and tangent di- 
rection and which is nearby and sufficiently bright. We 
have encoded the degree of goodness of each candidate 
pixel using a weighting scheme based on distance, intensity, 
angular, and tangent weighting factors. The highest 
weighted pixel is the one joined to the current loop. The 
constructive prucess is repeated until no other pixels can 
be joined to a loop segment end point. The steps of the 
Oriented Connixtivity Method algorithm are as follows: 

1. Apply Strous’s algorithm (to a “cleaned” image). 
2. Start forming a (new) loop fiom an unassigned pixel 

4 that’s labeled as a loop pixel. 
3. Define the searching region at Pi . 
4. Find the unassigned looplabeled pixels in the search- 

ing region of 6 . 
5. If there are no looplabeled pixels in the searching re- 

gion, find a looplabeled pixel in the 8-neighborhood of e . If one exists, apply Step 7. 
6. If there is no looplabeled pixel in the neighborhood, 

repeat Step 2. If so, set the looplabeled neigh- 
pixel as a new stating point and repeat step 3. 

7. Apply weighting scheme to find each pixel’s goodness. 
8. Assign the him-weighted pixel in the searching re- 

9. Connect 8 and 
10. Repeat Steps 1 to 8 until no other points are selected. 
11.Calculatethemeanwidthofthedetectedloop. 
12. Remove the detected loop h m  the image and save its 

13. Repeat Steps 2 to 1 1 until all h g e  pixels have been 

gion as the next pixel, , of the loop. 
,save e+, as new 4. 

description. 

considered. 

In Step 1 1, mean width is determined from the intensity 
profiles at three points (the midpoint and points halfway 
between the midpoint and endpoints) of the detected loop. 
At each point, loop width is defined to be the distance 
(measured perpendicularly to the loop’s local chection) 
between the maximum gradlent points on each loop side. 

33. Post-proceshg 

The OCM can miss some loops and over-segment (i.e., 
disconnect) dhers. The pixel-by-pixel linking process may 
also produce aliased (i.e., j a w )  loop shuctures. To re- 
move the aliasing and join the disconnected subsegments 
of the loops, we post-process the OCM’s output by apply- 
ing B-spline fitting and edge linking. The first B-spline 
fitting is designed to produce smooth loop curves. In our 
usage of B-spline fitting, a different n u m b  of equally- 
spaced loop points are used for the control points accord- 
ing to the length of each loop to be fit (i.e., more control 
points are used to represent a longer loop). Then a simple 
edge linking and the second B-spline fitting are applied to 
merge disconnected loop segments smoothly: namely, if 
two loop segments terminate a short distance from each 
other, they are linked provided that they have similar tan- 
gent directions at theii end points. 

4. Experimental Results 

We have evaluated the effectiveness of the OCM using 

To benchmark the OCM’s effectiveness, we applied a 
man& method (which we will label MM) that involved 
manually identifymg as many coronal loop points as p i -  
ble and a semi-manual method (which we will label SMM) 
that involved manually sampling several coronal loop 
points and using the points sampled on each loop as the 
control points of a B-spline fitting. These two manual 
methods and the OCM were applied on size 5 0 0 ~  500 
synthetic datasets that were created by projecting a collec- 
tion of 3D field lines generated h m  three known dipoles 
onto a 2D image. 

The benchmatking considered the global positional er- 
ror (GPE) and four metria on this error (e.g., maximum, 
minimum, mean, and standard deviation). This error meas- 
ures the distance of W d e t e c t e d  curves from the known 
loop centen-. The WE is measured over all loops. Fig. 
2(a) shows a synthetic dataset and the overlaid blue curves 
in Fig. 2(b) represent the loops detected in this image by 
the OCM. As shown in Fig. 2(b), our technique detected 
most of the loops that are easily visible to human vision. 
The GPE measures for the two manual metbods and the 
OCM on the synthetic image shown in Fig. 2 are listed in 
Table 1. The OCM p r o d u c e d  smaller errors and had l e s ~  

synthetic andreal coronal images. 



variance in position on its loops. However, the numbers of 
t r d d e t e c t e d  loops were 74, 69, and 57 for the MM, 
S a ,  and OCM, respectively. 

We have also applied the OCM to seven real coronal 
images. To analyze the effectiveness of the OCM, eight 
coronal loops were selected arbitrarily on each unage and 
then the images were considered by the semi-manual 
method and by the OCM. Three classes of error were 
measured: the number of false positives, errors in length, 
and the positional errors. There were 4 global false posi- 
tive errors (i.e., 4 loop shuctures were detacted by the 
semi-manual method but mt detected by the OCM) in the 
collection of tests. The OCM tended to over-segment 
loops; the average loop lengths from OCM were 44% 
shorter than the loop lengths from SMM. The average 
relative global position error for the OCM was 3.30 pixels. 
The result for the image shown in Fig. l(a) is shown in Fig. 
l(e). The overlaid blue cucves in Hg. l(e) represent the 
loops detected by the OCM; the technique reasonably de- 
tected the welldefined loops. 
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5. Conclusions 

We have presented a new method of detemng solar 

Method, the first automated coronal loop detection tech- 
nique, uses physical constmhts to guide the axonal curve 
detection process. Through evaluation of the technique, we 
have shown that the technique can pvide amktent and 
reasonable automated detections of loop strucbnes in solar 
coronal images. 

For the future work, additional image processing tech- 
niques to sharpen the coronal loops and other techniques to 
more strongly exploit the orientation of the magnetic field 
will be explored. 

Similarly-shaped structures in other scientifically- 
interesting environments are influenced by other charac- 
terizable physical propehes, thus extending the OCM to 
other arenas may be possible. 

coronal loop structures. The O r i w  connectivity 
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